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The compound SrBe2(BO3)2 crystallizes in the monoclinic space group P2~/n in a cell of dimensions 
a = 9,247(1) A, b = 4.492(2) ~-, c = 11.561(1) .&, and/3 = 112.17(1) ° with Z = 4. Least-squares 
refinement affords the final residuals R = 0.034 and Rw = 0.045. The structure consists of layers of 
composition [Bez(BO3)2] 2- that are interleaved by Sr atoms. Each layer contains two crystallographi- 
cally inequivalent Be and B atoms; the Be atoms occupy distorted O tetrahedra while the B atoms 
occupy distorted triangular planar environments.  Two Be atoms of one type share two O atoms to 
form a dimer of edge-shared tetrahedra. The Sr atom occupies a distorted monocapped 8-coordinate 
site. © 1990 Academic Press, Inc. 

As part of our continuing studies of struc- 
tural and optical characteristics of new bo- 
rates (1-3) we have been involved in the 
synthesis of compounds having the formula 
XY2(BO3)2 where X and Y are cations of 
disparate sizes with formal dipositive 
charges (4, 5). We have been particularly 
interested in new compounds with X or Y = 
Be since such materials are likely to exhibit 
structures and properties similar to those 
observed for polyborates containing an ad- 
mixture of 3- and 4-coordinate B atoms. 

Little information on anhydrous beryl- 
lium borates has been reported; only the 
borate fluorides Be2BO3F (6) and KBe2 
BO3F2 (7) have been described. In each of 
these compounds the larger size of the Be 
atom relative to that of the B atom renders 
a selective occupation of tetrahedral sites 
by Be atoms and triangular sites by B atoms 
even though triangular coordination of Be 
atoms is known to occur (8). We observe a 
similar distribution of the Be and B atoms 
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in the new compound SrBe2(BO3)2 which 
we describe here. 

Single crystals of the compound Sr 
Be2(BO3)2 were grown from a melt of com- 
position 33 mol% SrO, 33 mol% BeO, and 
33 mol% B203 that was cooled in a Pt cruci- 
ble from 1100 to 900°C at 8°C/hr. Clear, col- 
orless crystals were physically separated 
from the solidified melt. 

A crystal of approximate dimensions 
0.2 × 0.2 × 0.1 mm was selected and 
mounted on a glass fiber with epoxy for 
X-ray structure determination. Diffraction 
data were collected with a Rigaku AFC6R 
diffractometer equipped with MoKo~ radia- 
tion. Unit-cell parameters were determined 
by automatic centering and least-squares 
refinement of 20 reflections in the range 
30 < 20 < 36 °. Intensity data were collected 
with oJ-20 scans and a scanning speed of 
16°/min in oJ. Three standard reflections, 
monitored every 200 reflections, exhibited 
no significant fluctuations throughout the 
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TABLE I 

CRYSTALLOGRAPHIC DATA FOR SrBe2(BO3) 2 

TABLE II 

ATOMIC COORDINATES AND THERMAL 
DISPLACEMENT COEFFICIENTS FOR SrBe2(BO3) 2 

Formula weight, amu 223.26 
Crystal system Monoclinic 
Space group P21/n (No. 14) 
a, A 9.247(1) Sr 
b, A 4.492(2) Be(l) 
c, ]i 11.561(1) Be(Z) 
/3, o 112.17(1) B(1) 
V, ~3 444.7(2) B(2) 
Z 4 O(1) 
Dcoa~a. g cm -3 3.33 0(2) 
F(000) 416 0(3) 
Diffractometer Rigaku AFC6 0(4) 
Radiation MoKa (h = 0.71069) 0(5) 

graphite-mono- 0(6) 
chromated 

Data collection ---h, k, l 
No. Observations 

(Fo 2 > 3o'(F2)) 1222 
R 0.034 
Rw 0.045 
Maximum shift in final cycle 0.01 

collection. A total of 1651 reflections was 
measured over the range 2 -< 20 -< 62 °, af- 
fording 1285 unique reflections with R 2 - 
3or(F2). The systematic extinctions, hOl, 
h + l =  2n + 1, and0k0, k =  2n + 1, are 
consistent with the space group P21/n (No. 
14). Computer programs from the TEX- 
SAN crystallographic software package (9) 
were used to determine the structure. The 
position of the Sr atom was located by ap- 
plication of the direct methods program 
SHELXS (10). The positions of the remain- 
ing atoms were determined by examining 
subsequent difference electron density 
maps. Following refinement of the model 
with isotropic thermal parameters, the data 
were corrected for absorption with the pro- 
gram DIFABS (11). Final least-squares re- 
finement on F with those 1222 reflections 
having F 2 >_ 3o-(F 2) and anisotropic ther- 
mal displacement coefficients on each atom 
affords the final residuals R = 0.034 and 
Rw = 0.045. Analysis of the final difference 
electron density map reveals a maximum 

x y z B(A2) a 

0.42743(4) 0.02664(8) 0.65652(3) 0.39(1) 
0.6266(6) -0.099(1) 0.0490(5) 0.5(2) 
0.2164(6) -0.062(1) 0.3077(5) 0.4(1) 
0.4501(5) -0.437(1) 0.8549(4) 0.3(1) 
0.2948(5) 0.409(1) 0.4246(4) 0.4(1) 
0.2848(3) -0.4868(6) 0.5315(3) 0.48(9) 
0.3442(3) 0.1210(7) 0.4217(3) 0.40(9) 
0.5401(3) -0.5118(7) 0.7886(3) 0.6(1) 
0.4728(3) -0.1635(7) 0.9127(3) 0.6(1) 
0.1635(3) -0.1286(7) 0.6418(3) 0.7(1) 
0.7576(3) -0.0814(7) 0.8177(3) 0.42(9) 

a B = (87r2/3) Ni Nj Uoa*a*ai" aj. 

peak of density 1.5 e/~k 3 which corresponds 
to 0.79% of a Sr atom. Crystallographic 
data and final atomic parameters are listed 
in Tables I and II, respectively. 

A labeled sketch of the contents of the 
unit cell is provided in Fig. 1. The nature of 
the structure is best appreciated by inspec- 
tion of the perspective view along the b axis 

FIG. 1. Sketch of a labeled unit cell of the compound 
SrBe2(BO3)2 viewed along the b axis. Large open cir- 
cles represent O atoms, small solid circles represent Sr 
atoms. Open circles with open bonds represent B at- 
oms, open circles with solid bonds represent Be atoms 
here, and in ensuing figures. 
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FIG. 2. Perspective view of the structure of Sr 
Be2(BO3) 2 along the b axis. 

given in Fig. 2. Layers  of  composit ion 
[Be2(BO3)2] 2- separated by planes of  Sr at- 
oms may be identified. A drawing of  a sin- 
gle beryll ium borate layer as viewed orthog- 
onal to the b axis is given in Fig. 3. Each 
layer contains two crystallographically in- 
equivalent Be atoms and two inequivalent 
B atoms. The Be atoms occupy distorted 
tetrahedral  sites and the B atoms occupy 
triangular sites. The BeO4 and BO3 groups 
are connected  one to the other  by sharing O 
vertices. The te t rahedra occupied by atom 
Be(2) share vert ices to form chains that ex- 
tend along the b axis. This contrasts to the 
tetrahedra occupied by atom Be(l)  that are 
present  as isolated pairs sharing an edge. 

Selected interatomic distances and an- 
gles are listed in Table III. The mean B e - O  
distance, 1.63(4) A, compares  to that, 1.61 
A, computed  for a 4-coordinate Be atom 
from crystal  radii (12) and the mean B - O  
distance, 1.37(1) A, is also similar to that, 
1.36 A, computed  for a 3-coordinate B 
atom, suggesting there is little disorder 
among the Be and B sites. The sensitivity of 
the intensity data to the distribution of  the 
Be and B atoms was examined in two ways. 
The refinement was repeated with the Be 
atoms on B sites and B atoms on Be sites. 
This procedure  afforded larger residuals 
and equivalent  temperature  factors for the 
Be atoms that were not positive-definite 
and increased by  a factor  of  three for the B 

FIG. 3. Sketch of a single compositional layer 
[Be2(BO3)2] 2- viewed orthogonal to the b axis. 

T A B L E  III 

SELECTED INTERATOMIC DISTANCES (fi~) AND 
ANGLES (o) FOR SrBe2(BO3) 2 

Sr-O(1) 2.677(3) O(1)-Sr-O(1) 110.9(1) 
Sr-O(1) 2.776(3) O(1)-Sr-O(2) 84.19(9) 
Sr-O(2) 2.562(3) O(1)-Sr-O(4) 98.13(9) 
Sr-O(2) 2.676(3) O(1)-Sr-O(5) 85.5(1) 
Sr-O(3) 2.840(3) O(2)-Sr-O(3) 78.12(9) 
Sr-O(3) 2.552(3) O(2)-Sr-O(4) 115.81(9) 
Sr-O(4) 2.957(3) O(2)-Sr-O(5) 94.6(1) 
Sr-O(5) 2.482(3) O(3)-Sr-O(4) 76.34(9) 
Sr-O(6) 2.955(3) O(3)-Sr-O(6) 70.42(9) 

O(4)-Sr-O(5) 75.61(9) 
O(4)-Sr-O(6) 66.35(8) 

Be(1)-O(1) 1.597(6) O(l)-Be(1)-O(4) 114.2(3) 
Be(1)-O(4) 1.653(6) O(1)-Be(1)-O(5) 107.4(4) 
Be(1)-O(4) 1.702(6) O(4)-Be(1)-O(4) 90.3(3) 
Be(1)-O(5) 1.580(7) O(4)-Be(1)-O(5) 111.7(3) 

O(4)-Be(1)-O(5) 112.8(4) 

Be(2)-O(2) 1.623(6) O(2)-Be(2)-O(3) 113.6(3) 
Be(2)-O(3) 1.595(6) O(2)-Be(2)-O(6) 111.0(3) 
Be(2)-O(6) 1.683(6) O(3)-Be(2)-O(6) 114.2(4) 
Be(2)-O(6) 1.641(6) O(3)-Be(2)-O(6) 105.8(3) 

O(6)-Be(2)-O(6) 109.2(3) 

B(1)-O(3) 1.369(5) O(3)-B(1)-O(4) 118.5(4) 
B(1)-O(4) 1.378(5) O(3)-B(1)-O(5) 119.8(4) 
B(1)-O(5) 1.369(5) O(4)-B(1)-O(5) 121.6(4) 

B(2)-O(1) 1.359(5) O(1)-B(2)-O(2) 119.0(4) 
B(2)-O(2) 1.374(5) O(1)-B(2)-O(6) 122.5(4) 
B(2)-O(6) 1.388(5) O(2)-B(2)-O(6) 118.5(4) 
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atoms. A partial disorder was imposed by 
altering the occupancy factors for the B and 
Be atoms to correspond to a 20% occu- 
pancy of B sites by Be atoms and Be sites 
by B atoms. The occupancy factor of each 
atom was then refined. All factors refined to 
within 5% of unity and their magnitudes 
were contraposed to values expected for 
any model of disorder among the Be and B 
sites. 

The Be(l) atoms related by a center of 
symmetry across the shared edge 0(4) .-- 
0(4) of the tetrahedra are separated by 
2.35(1) .~, Scheme 1. The angle between the 
plane of atoms Be(l), O(4), and 0(4) and 
the plane of atoms Be(l), O(1), and 0(5) is 
87.7 °. The four-membered ring Be(1)-O(4)- 
Be(1)-O(4) exhibits minimal deviations 
from a square as shown by consideration of 
the angles O(4)-Be(1)-O(4), 90.9(3) °, and 
Be(1)-O(4)-Be(1), 89.1(3) °. A dimer of tet- 
rahedra formed by sharing an edge is rela- 
tively rare in oxides, although more com- 
mon in chalcogenides and halides; a similar 
unit Be206 has been identified in the mineral 
epididymite, Na2Be2Si6015 • H20 (13). The 
metrical data above may be compared to 
the four-membered S i - O - S i - O  ring in the 
compound tetramesitylcyclodisoloxane 
(14). The Si-O bond lengths are 1.66 and 
1.72 ,~ and the Si .-- Si separation is 2.31 ,~; 
evidence for greater deviation from a 
square is provided by the O - S i - O  angle of 
94 °. The tetrahedron about atom Be(2) is 
only slightly distorted (cf., Table III). 

SCHEME 1 

SCHEME 2 

The Sr atom occupies a distorted mono- 
capped 8-coordinate environment, Scheme 
2, between layers. The Sr-O distances 
range from 2.552(3) to 2.957(3) A with a 
mean of 2.72(6) A. These distances com- 
pare to those observed for the 9-coordinate 
Sr atom in the compounds Sr3Sc(BO3)3, 
2.500(2)-2.857(2) A (1), and SrNaBO3, 
2.539(7)-2.93(2) fi~ (15). 

Despite the existence of an extensive 
structural chemistry of simple anhydrous 
borates as well as polyborates exhibiting an 
admixture of 3- and 4-coordinate B atoms, 
only a limited number of chains, layers, and 
networks formed from combinations of tet- 
rahedra and triangles selectively centered 
by atoms of different types are known. Ex- 
amples include the aluminum orthoborates 
Sr2A12B208 (16), Li6AI(BO3)3 (17), CaA1BO4 
(18), and CaAI2B207 (•9); the zinc borates 
Zn3(BO3)2 (20), LiZnBO3 (21), KZn4(BO3)3 
(22), and BaZn2(BO3) 2 (23); and the be- 
ryllium borates mentioned here. Given the 
expectation and observation that Be atoms 
prefer in oxides tetrahedral sites in the 
presence of B atoms because of their larger 
size and greater electropositive nature, it is 
likely that many additional tetrahedral-tri- 
angular networks containing these atoms 
will be synthesized in the future. 
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